扫一扫
关注微信公众号

一款国产Intel服务器的评测(联想T280)
2007-07-28   网络

英特尔Bensley平台

  • 平衡的双处理器平台

  • 支持FB-DIMM 内存,最高支持4通道,64GB内存寻址

  • 进一步扩展了I/O 能力的6311/6321ESB芯片

  • 支持英特尔I/O加速技术

  • 支持英特尔虚拟化技术

联想T280服务器

  • 采用英特尔最新的 Bensley平台

  • 自动开机诊断技术

  • 五重硬盘防护设计

  • 万全慧眼增强版服务器监控管理系统

  • 良好的扩展性

Intel Xeon 5000处理器

2006年5月23日英特尔公司发布了“Bensley”平台,该平台包括代号为Dempey的双核Xeon DP处理器和代号为Blackford的芯片组。Dempsey处理器将会启用新的命名方式,被称之为Xeon 5000系列,根据主频、前端总线、缓存容量等进一步细分为不同的型号,Blackford芯片组的名称也相应被命名为Intel 5000芯片组,也是根据功能、规格分为P、V、Z等不同的型号。

498)this.style.width=498;" border=1>
联想在国内率先发布了应用了英特尔双核Xeon平台的服务器T280

不仅仅是对于英特尔,对于英特尔的紧密合作伙伴也一样,Dempsey出现的意义重大——这意味着英特尔阵营终于有了真正可以同AMD Opteron双核心处理器相抗衡的产品线。其实早在2006年英特尔春季信息技术峰会上,英特尔发布了很多关于Bensley平台乃至下一代 Xeon平台的技术细节,这同以往英特尔在发布新品之前三缄其口的态度大相径庭。显然,近一年的时间里,英特尔承受的来自竞争对手的巨大压力同这种迫不及待的态度是有着密切关系的。本文将会根据英特尔正式公布的资料向读者公布更多介绍性资料。

498)this.style.width=498;" border=1>
Xeon 5050处理器(顶部)

498)this.style.width=498;" border=1>
Xeon 5050处理器(底部)

498)this.style.width=498;" border=1>
Xeon 5080处理器(顶部,工程样品)

498)this.style.width=498;" border=1>
Xeon 5080处理器(底部,工程样品)

根据英特尔目前的规划,双核Intel Xeon 5000系列处理器将会是它最后一个沿用NetBurest架构的系列产品,它将两颗NetBurst微架构的处理器封装在一起,可用于 32bit/64bit双路服务器和工作站。

自从Netburst微架构发布以来,英特尔每一款基于该微架构的产品都会被或多或少的进行修改、优化。这次的Xeon 5000系列处理器也不例外,它们在保持对于传统IA-32软件兼容的同时,对于NetBurst微架构进行了进一步的优化— —主要涉及到超管线技术(Hyper Pipelined Technology)和执行追踪缓存(Execution Trace Cache)。其超管线技术支持多级管线深度,可以允许处理器工作在更高的频率上。

型号 5080 5070 5060 5063(MV) 5050 5040 5030 5020
sSpec SL968 SL969 SL96A SL96B SL96C SL96D SL96E SL96F
主频 3.73GHz 3.46GHz 3.2GHz 3.2GHz 3.0GHz 2.83GHz 2.66GHz 2.5GHz
CPUID string 0F64 0F64 0F64 0F64 0F64 0F64 0F64 0F64
封装类型 771pin 771pin 771pin 771pin 771pin 771pin 771pin 771pin
核心电压 1.25-1.40 1.25-1.40 1.25-1.40 1.25-1.40 1.25-1.40 1.25-1.40 1.25-1.40 1.25-1.40
总线速度 1066MHz 1066MHz 1066MHz 1066MHz 667MHz 667MHz 667MHz 667MHz
Thermal Guideline 130W 130W 130W 95W 95W 95W 95W 95W
Core stepping C1 C1 C1 C1 C1 C1 C1 C1
Thermal Spec 78℃ 78℃ 78℃ 68℃ 68℃ 68℃ 68℃ 68℃
L2 Cache Size 4MB 4MB 4MB 4MB 4MB 4MB 4MB 4MB
L2 Cache Speed 3.73GHz 3.46GHz 3.2GHz 3.2GHz 3.0GHz 2.83GHz 2.66GHz 2.5GHz
Manufacturing Technology 65nm 65nm 65nm 65nm 65nm 65nm 65nm 65nm
Bus/Core Ratio 14 13 12 12 18 17 16 15

英特尔此次一共发布了Xeon 5080、Xeon 5070、Xeon 5060、Xeon 5063、Xeon 5050、Xeon 5040、Xeon 5030和Xeon 5020等8款处理器,这些处理器均配置了4MB L2缓存,其中每个核心独享2MB L2缓存,其前端总线为1066MHz或者667MHz,可以提供8.5GB/s或者5.3GB/s的传输带宽。

我们还记得英特尔曾经于去年10月份发布一款基于Paxville DP核心的双核处理器,它同样是将两个Netburst微架构的处理器封装在一起,每核心2MB L2缓存,800MHz FSB前端总线,具有6.4GB/s的带宽,看上去会比5050/5040/5030/5020等FSB667处理器更“高级 ”。实际上Intel 5000系列芯片组采用了双独立总线架构(DIB),因此每颗处理器同芯片组之间采用一条1066MHz或者667Mhz总线通讯,总带宽达到了 17GB/s或者10.6GB/s,新的Xeon系统将会更加平衡。

Xeon 5000系列处理器不再采用Socket604封装,而是采用了类似现在桌面处理器LGA775的封装形式:FCLGA6 LGA771。新的封装形式更利于功率传导,更加符合高主频的处理器的需求。65nm制程也终于应用到了Xeon DP处理器中,这可以在一定程度上抑制英特尔处理器持续走高的发热量。不过在实际使用中Xeon 5000系列处理器发热量依然偏高。

从上面的表格,我们可以了解到前端总线为1066MHz的处理器的TDP大都为 130W,前端总线为667MHz的处理器的TDP均为95W,同之前的Nocona核心的Xeon处理器基本持平。其中的Xeon 5063比较特别,它的前端总线为1066MHz,但是TDP为95W,而并非130W。Xeon 5000强化了热量和功率管理,主要包括TM1(Thermal Monitor)和EIST(Enhanced Intel SpeedStep technology)。应用于企业环境的双路服务器将会从这些技术中受益。TM1可以在高温环境小有效的降低处理器温度,EIST则为服务器和工作站提供了有效的功率管理能力。

这个系列的处理器依然支持超线程技术(Hyper-Threading Technology),这样每个核心可以处理2个线程,每颗双核心处理器可以并行处理4个线程,双路配置的处理器则能可以同时处理8个线程。下一代的 Xeon处理器将会采用Core微架构,代号Woodcrest的Xeon处理器将不再支持超线程技术。

当然,这款处理器依然会沿袭Netburst微架构处理器的一些功能,比如高级动态执行机制(Advanced Dynamic Execution)、高级传输缓存(Advanced Transfer Cache)、增强浮点和多媒体单元和SSE3。

Xeon 5000系列处理器同样支持英特尔扩展64位技术(Intel EM64T),从而可以运行利用了64位扩展技术的优势的操作系统和应用程序。此外,这个系列的处理器也支持XDbit技术(Execute Disable Bit),通过对于内存标记为可执行状态或者非可执行状态,放置某些通过内存溢出错误来破坏系统的病毒——这个功能是需要操作系统支持的。

Xeon 5000系列处理器支持英特尔虚拟化技术(Intel Virtualization Technology)。虚拟化并非新技术,比如很多VMware、Xeon等产品的用户早已经在PC或者服务器上实现了虚拟化,英特尔虚拟化技术强调的是通过专门的硬件更好的支持虚拟化应用。

Intel 5000系列芯片组

英特尔发布了三款芯片组用于支持双核Xeon 5000系列处理器,它们是Intel 5000P、Intel 5000V和Intel 5000X,其中的前两者主要定位于服务器应用,而后者是定位于工作站应用。我们将会在本章节主要了解Intel 5000P、Intel 5000V这两款芯片组。

498)this.style.width=498;" border=1>

Intel 5000P、Intel 5000V这两款芯片组的关系就如同现在的Intel E7520和Intel E7320芯片组的关系,Intel 5000P定位相对较高,Intel 5000V定位略低。Intel 5000P和Intel 5000V芯片组的主要区别在于MCH芯片,它们均可以搭配新的6321ESB芯片或者6700PXH芯片。相对于上一代芯片组E7520/E7320, Intel 5000 MCH芯片在处理器和内存方面做了重大的改进。

498)this.style.width=498;" border=1>
Intel 5000P芯片组功能示意图

498)this.style.width=498;" border=1>
Intel 5000V芯片组功能示意图

Intel 5000系列芯片组通过独立的点对点系统总线支持两个处理器,完全不同于之前的芯片组采用的共享总线的方式,这被英特尔称之为双独立总线(DIB)。每条总线运行频率为266MHz(1066MTS),那么安装了FSB1066处理器的系统的前端总线的总带宽最高可达17GB/s,安装了FSB667处理器的系统的前端总线的总带宽为10.6GB/s。其实从规格表上,我们可以看出Intel 5000芯片组已经为FSB1333做好准备,下一代的Woodcrest核心的处理器可以在现有平台上平滑升级。

498)this.style.width=498;" border=1>
FB-DIMM内存模组

498)this.style.width=498;" border=1>

FB-DIMM内存模组

近年来从并行向串行转变的趋势非常明显,FB-DIMM内存技术也是其中之一,它采用了多条并联的串行线,将内存模组上的每个芯片同AMB芯片连接,然后整个内存通道中的所有内存模组也是串接在一起,这样的设计方式可以系统更加容易获得大容量、高频率的内存系统。Intel 5000系列芯片组开始支持FB-DIMM(fully buffered DIMM)内存,英特尔计划让这种新型的内存全面取代现有的ECC Register DIMM,因此在新的Intel 5000系列MCH的datasheet中我们发现它并不兼容现有的内存规范。

Intel 5000P MCH支持36bit寻址能力,总共可支持64GB物理内存。MCH支持4个FB-DIMM内存通道,每个通道最高支持4个双bank FB-DIMM DDR DIMM。因此在非镜像模式下,MCH最高可支持16 DIMM或者最大64GB物理内存,在镜像模式下最大可以支持32GB物理内存。Intel 5000V MCH则仅支持2个FB-DIMM内存通道,每个通道最高可支持4 DIMMs,总共可支持8 DIMM,那么最高内存容量可达16 GB。目前主流的E7520 MCH最高可支持16GB DDR2内存或者32GB DDR266内存。

每个安装了DDR533 FB-DIMM内存的FB-DIMM通道的读取带宽为4.25 GB/s,所以4个通道最高可以提供17GB/s的内存带宽,这正好同FSB1066 DIB总线的带宽相匹配。FB-DIMM采用了非对称设计,其上行信号线为10bit,下行信号线为14bit,此时4通道FB-DIMM可以提供 8.5GB/s的写入带宽。在双通道配置的Intel 5000V平台上,这些数字都将减半,读取带宽为8.5GB/s,写入带宽为4.25GB/s。

Intel 5000P MCH和Intel 5000V MCH另外一个重要区别是对于PCI-Express总线的支持,5000P MCH支持3个x8 PCI-Express通道,每通道可以进一步配置为2个x4通道,其中1个x8通道(或者配置为2个x4通道)将用于同ESB2通讯。5000V MCH则仅提供1个x8(或者配置为2个x4通道)将用于同ESB2通讯。5000P MCH对于PCI-Express总线的支持同现有的E7520是相似的。

6321ESB 6311ESB
1st x 4 PCI-Express yes yes
2nd x 4 PCI-Express yes yes
2 x 1 PCI Express(1st pair) yes yes
2 x 1 PCI Express(2nd pair) yes yes
PCI-X yes yes
6SATA yes yes
Dual GbE yes no
Intel I/O AT yes no
SERDES yes no

英特尔还发布了新的I/O控制器Hub芯片Intel 6311ESB/6321ESB,这两款芯片相对于6300ESB进一步强化了高带宽连接总线,它可以提供2个64bit/133MHz PCI-X通道,而6300ESB则只能支持1个64bit/66MHz PCI-X通道。

Intel 6311ESB和6321ESB最大的区别在网络方面,6321ESB整合了双千兆网卡控制器,主板厂商只要再为其配置PHY芯片即可实现低成本的双千兆网卡输出。而且6321ESB还支持最新的Intel I/O加速技术,它可以进一步降低网络运行时对于处理器资源的占用。

Intel 6311ESB/6321ESB芯片通过带宽为2GB/s的ESI(Enterprise South Bridge Interface)总线同MCH通讯,ESI总线的本质也是PCI-Express技术。前面我们也提及到,MCH和ESB之间除了ESI总线之外,还会通过1条x8 PCI-Express进行辅助通讯,以确保南北桥之间的通讯畅通。Intel 6311ESB/6321ESB芯片还另外提供3个独立的x4 PCI Express通道,其中的一个用于LAN控制器,另外两个可以被配置为2x4或者1x8。

Intel 6311ESB/6321ESB都整合了一个Ultra ATA 100控制器、六个SATA控制器端口、一个EHCI控制器、四个UHCI控制器(可提供8个USB 2.0端口)、LPC接口控制器和一个Flash BIOS接口控制器。为了确保各种系统接口的运行效率,保证整个系统的性能,Intel 6311ESB/6321ESB提供了数据缓冲和接口仲裁功能。

Intel 6311ESB/6321ESB兼容ACPI规范,可以支持Full-on、Stop Grant、休眠到内存、挂起到磁盘和软件关机电源管理状态。利用整合的LAN功能,Intel 6311ESB/6321ESB也支持用于远程管理的ASF规范。

我们将Intel 5000系列芯片组主要规格整理为下表:

498)this.style.width=498;" border=1>

热量管理

随着处理器技术的变化,或者说随着处理器发热量越来越大,在构建服务器系统的时候,热量管理的重要性越来越突出。只有保持一个适当热量环境,系统才能长时间、可靠的运行。一个完全的解决方案包括部件级热量管理和系统级热量管理。比如CPU所使用的主动或者被动式散热器就是部件级热量管理解决方案,系统风扇、导流设计等方面则属于系统级热量解决方案。

处理器型号 TDP(W) Minimum

TCASE(°C)
Maximum

TCASE (°C)@TDP
5080 130

5

Profile A:69

Profile B:78

5060
5063 95

5

67
5050 95

5

Profile A:61

Profile B:67

5030

英特尔对于对于构建基于适用于Xeon 5000的系统给出了基本的要求,对于最低Tcase温度的要求是相同的,都是5 °C,主要的区别在于对于最高Tcase温度。5080和5060这两款TDP为130W的处理器,其Tcase温度不能超过69 °C(或者78 °C)。而5050和5030这两款TDP为95W的处理器,其Tcase温度不能超过61 °C(或者67 °C)。其中的Profile A和ProfileB代表不同的应用环境。

除了对于处理器的外部运行环境提出了要求之外,英特尔还通过热量监测功能(Thermal Monitor 1)来进一步确保Xeon 5000系列处理器的安全。TM1功能并非英特尔处理器的新功能,我们在这里再次介绍一下。

TM1功能主要是在处理器达到最大运行温度的时候通过热量控制电路(TCC, Thermal Control Circuit)控制处理器温度。TCC可以控制处理器内部的核心时钟,在处理器过热的时候对于时钟信号进行调制,主要方法是通过交替的关闭和打开时钟来限制处理器的工作从而减少发热,以尽快的把温度降低到安全范围内。TM1机制是处理器内部的自我保护机制之一,并不能通过BIOS等方式进行配置和调节,也不需要处理器之外的硬件、软件驱动程序或者中断等操作的支持。在正常的情况下,总线流量处于监听状态,当TCC被激活之后,中断请求则会被锁定。另外,英特尔还提供了一个辅助机制允许系统软件强制处理器按照12.5%的幅度降低或者升高其功耗,这被称为“On-Demand(按需) ”模式,读者应该区分它同TM1功能的不同。

498)this.style.width=498;" border=1>

随着CPU、内存、外部设备的性能越来越高,芯片组的负载也在不断的提升,其发热量也越来越不容忽视。在我们目前收到的送测服务器产品来看,其芯片组也均安装了被动式散热器。上图中是联想T280服务器中所使用的Intel 5000V芯片组的散热片。

Intel 5000 MCH整合了热量传感器,系统可以通过软件对于其状态进行监控,如果MCH出现过热的情况,那么它可以通过控制各种接口(比如FSB、I/O)的流量控制其温度。其温度传感器包括一个热量二极管和8bit精度的逐次近似计算法A/D转换电路,可以用于测量范围在0-127.5 °C的温度。

Dempsey核心的处理器的功耗并没有明显的降低,新引入的FB-DIMM却是一个发热大户,在运行期间其AMB芯片的表面温度接近於百摄氏度是属于“正常”的。对于服务器厂商来说,需要更加精心的进行系统级散热设计。

英特尔虚拟化技术

近年来,英特尔也频频的提及虚拟化技术,特别是2006年英特尔春季信息技术峰会上设置了专门的展区来演示基于英特尔平台的虚拟化技术。那么虚拟化可以带给我们什么?

498)this.style.width=498;" border=1>

虚拟化可以将你的IT环境改造成为更加强大、更具弹性、更富有活力的架构。比如它可以通过把多个操作系统整合到一台高性能服务器上,最大化利用硬件平台的所有资源,让你用更少的投入实现更多的应用,还可以简化IT架构,降低管理资源的难度,避免IT架构的非必要扩张。你还可以单个服务器上复制多个运行相同应用的虚拟机,这样当所某个虚拟机上所运行的程序出现问题的时候,可以快速的用另外一个虚拟机来代替,最大化保持业务的持续性,而不用增加太多的硬件平台的投入。软件开发者可以在同一个硬件平台上的不同虚拟机上测试不同版本的软件,虚拟技术通过通过复制环境而轻易的帮助用户达成了节约成本的目的。

应该说虚拟化并不算一项新的技术,借助于多家软件厂商已经推出的成熟的软件解决方案,它已经应用到从个人电脑到数据中心多年。英特尔利用自己在硬件设计方面的技术优势,将虚拟化应用进一步“普及”到了X86服务器和工作站上,并将其称为英特尔虚拟化技术(Intel Virtualization Technology)。

498)this.style.width=498;" border=1>

操作系统被设计用来直接访问硬件平台的资源;它们一般不会共享对于硬件的控制。虚拟化技术则是在真正的硬件平台和操作系统之间插入一个VMM(虚拟机监视器)层,它来模拟不同的硬件设备,使得每个虚拟机(VM)中的操作系统都认为自己在同硬件通讯,而实际上是VMM负责中断、资源的调配。具体的说,VMM主要的作用包括以下的4个方面:

  • 模拟完整的硬件环境,这是虚拟机最主要的也是必要的功能,理想的状态下,操作系统和应用程序对于自己究竟是同真正的硬件通讯还是同虚拟机通讯并不知情

  • 隔离,不同的虚拟机位于不同的分区上,一个虚拟机上的错误不会波及到另外一个虚拟机,因此隔离的作用可以提供一个较高安全水平和可用性的虚拟环境。用户可以对每个分区进行单独的控制,可以关闭或者停止某个虚拟机而不会影响平台上的其它虚拟机。

  • 分配平台资源(进程、内存、I/O、存储等等)

  • 封装软件栈(包括操作系统和状态信息),使得它们可以被方便的拷贝并且传输到新的虚拟机上

在IA-32架构上,所有的软件运行在不同的层上(Ring -0 到 Ring-3)。操作系统运行在Ring-0上,而独立的应用程序则一般运行在Ring-3上,这个层受到的约束较多。当在硬件平台上运行虚拟机的时候, VMM必须具有对硬件资源的控制权,因此通常的做法是让VMM运行在Ring-0,而客户操作系统运行在Ring-1或者Ring-3。但是,当今的操作系统已经被设计是运行在Ring-0上,所以VMM需要解决的是如何让这些操作系统如何其控制。

一种方式是VMM实时的监控硬件资源和客户操作系统(GUEST OS)的运行情况,确保客户操作系统不会接收到错误的指令。可想而知,这种方式会占用大量的系统资源,虚拟机的性能会受到明显的影响。另外一种方法是对于操作系统进行静态的修改,但是这需要操作系统厂商的配合,厂商即便是修改了,那么结果是运行在物理平台上的操作系统和运行在虚拟机上的操作系统有诸多的不同,向虚拟机移植的过程依然可能会产生不少问题。

英特尔虚拟化技术的核心是通过提供一定程度的硬件支持,从而消除使用纯软件解决方案的诸多问题。首先,它依然允许客户操作系统和应用程序运行在最初所设计的层上,这样这些程序就无需进行修改,然后给予VMM更高的权限。其次,通过硬件支持 VMM和客户操作系统之间的过渡(Hardware-Based Transitions),这大大降低了虚拟机运行过程对于系统资源的占用。最后,提供基于硬件的内存保护,VMM、每个客户操作系统的状态系统都被保存在专用的内存空间内,从而有效的确保了不同的进程的完整性。

除此之外,英特尔虚拟化技术支持64bit软件& mdash;—包括64bit操作系统和运行其上的软件。

更重要的是,英特尔正在试图利用自己在业界的影响力,协同操作系统厂商(Microsoft)、虚拟机软件开发商(Microsoft、VMware、XenSource)通过英特尔虚拟化技术将虚拟解决方案标准化,这样可以大大降低IT架构的复杂性,从而提升运行效率。 

英特尔I/O加速技术

目前有几种技术在试图提升网络应用的效能,降低网络应用对于系统处理器资源的占用。TOE(TCP Offload Engine,TCP卸载引擎)通过网卡上的专用处理器处理部分或者全部的封包,借此来降低对于系统处理器资源的占用,不过这种解决方案也只是对于具有某些特征的数据包有效;RDMA(Remote Direct Memory Access,远程直接内存访问)是发送端系统直接将有效数据送至目的系统的指定的内存中,无需移动数据包的时间消耗,因此大大提升了网络传输的效率。但是这种技术需要专用的网卡,应用程序也需要进行修改,甚至还增加了一个RDMA层的封装过程,而且这种操作风险较高,因此目前看来还并非一个吸引人的解决方案;Onloading技术将系统处理器作为处理网络流量的第一引擎,尽可能的提升CPU处理器网络数据包的效率,这种思想已经被英特尔I/O加速技术借鉴。

498)this.style.width=498;" border=1>

上图显示了客户端从服务器请求数据的一个典型过程,在这个过程中影响应用程序响应时间的因素很多,封包必须经过接收、识别和处理才能将其中的数据提供给应用程序使用,应用程序根据所接收的指令向存储设备发送请求,要求获得指定的数据,这些数据还要被分解为TCP/IP包传回到客户端。这个过程中解包、封装包的过程对于处理器而言并不是一个复杂的过程,但是却是会占用处理器的时间,特别是现在的千兆网络应用越来越普及的今天。

英特尔I/O加速技术除了从网络设备本身方面进行优化之外,在整个系统的多个方面都进行了与之配套的优化,同已经较为广泛使用的TOE技术有较多的不同:

  • CPU 方面:专门为Intel架构优化网络堆栈,从而可以降低处理器计算负载

  • MCH 方面:整合了数据移动引擎(Data movement engine)

  • LAN 方面:在MAC层实现硬件加速

  • OS 方面:Microsoft Windows 2003 Server已经提供支持,Liunx将会提供支持

在芯片组部分章节中,我们已经介绍过英特尔同时发布的 6311/6321ESB I/O芯片,其中的6321ESB支持英特尔I/O加速技术。我们在联想T280服务器上安装了Windows server 2003操作系统,安装INF驱动程序滞后,设备管理器中发现一个名称为“Base System Device”的未知设备,这是启用I/O AT功能的重要设备。

498)this.style.width=498;" border=1>

498)this.style.width=498;" border=1>

我们在微软网站下载了系统补丁KB912222-x86- enu.exe并且进行了安装,然后升级“Base System Device”设备的驱动程序,它会在支持I/O AT技术的网卡驱动包中找到自己的驱动,这个设备最后被识别为Intel 5000 Series Chipsets Integrated Device-1A38

498)this.style.width=498;" border=1>

在查看该设备的属性,会发现一个名称为“ Setting”的标签,在这里用户可以选择是否启用英特尔I/O加速技术。

我们分别在启用和关闭英特尔I/O加速技术的情况下运行一定的网络相关测试,然后记录其处理器负载情况: 

498)this.style.width=498;" border=1>
未开启I/O AT功能时处理器负载

498)this.style.width=498;" border=1>

开启I/O AT功能时处理器负载

启用I/O AT 关闭I/O AT 处理器负载降幅
12.5% 15.3% 22.4%



联想T280服务器

在英特尔发布Bensley平台的同时,联想也正式推出了其基于双路双核Xeon处理器的T280/R280服务器,其中的T280是一款塔式服务器,R280则是一款5U高度的塔式服务器。这两款服务器因具有多种创新特性获得了2006年美国IDF创新大奖。

498)this.style.width=498;" border=1>

联想T280服务器主板采用了Intel 5000V MCH和6321ESB芯片组,可以支持英特尔Xeon 5000系列处理器,送测样机配置了两颗Xeon 5050处理器,其主频为3.0GHz,667MHz前端总线,2x2MB L2缓存。

这款服务器支持最新的FB-DIMM内存技术,其提供了6个FB-DIMM内存插槽,可配置为双通道模式,最高可以安装24GB的内存。另外还支持内存冗余、内存RAID、x4 SDDC、ECC等技术。送测样机配置了4条英飞凌FB-DIMM 533MHz DDR2内存,每条容量512MB,配置为双通道模式,最高可以提供8.7GB/s的内存带宽。

498)this.style.width=498;" border=1>

服务器主板板载了Adaptec Ultra 320 SCSI控制器,可支持HostRAID 0/1/1E等磁盘阵列模式。我们收到的送测样机还配置了LSI MegaRAID 320-0 零通道RAID卡,并且配置了三块FUJITSU MAT3073NC硬盘,我们在测试期间用它们组建了RAID 5磁盘阵列。

498)this.style.width=498;" border=1>

英特尔6321ESB芯片整合了双千兆网卡控制器,配合主板板载的Intel 82563EB双PHY芯片,实现了双千兆网卡的功能。正确的安装驱动程序之后,在硬件管理器中这款网卡的名称是Intel Pro/1000EB Network Connection with I/O Acceleration。

498)this.style.width=498;" border=1>

T280的前面板上部安装了一个52倍速光驱和一个软驱,另外还预留了一个3.5英寸扩展位。在上部的一侧是电源开关、复位开关、系统指示灯、磁盘指示灯、网卡指示灯和故障指示灯。前面板的下半部分是硬盘舱,可以安装4块SCSI硬盘,它们下方的空间还可以再安装一个相同的硬盘舱,因此这款服务器最高可安装8块硬盘。服务器的前面板上还设计了前置VGA输出和2个USB端口,方便服务器维护。

498)this.style.width=498;" border=1>

T280机箱内

热词搜索:

上一篇:AMD、Intel同价位服务器功耗对比
下一篇:日本用可擦写大规模集成电路清除病毒

分享到: 收藏